The sampling design effect on partial least squares algorithm
نویسندگان
چکیده
منابع مشابه
Partial least squares methods: partial least squares correlation and partial least square regression.
Partial least square (PLS) methods (also sometimes called projection to latent structures) relate the information present in two data tables that collect measurements on the same set of observations. PLS methods proceed by deriving latent variables which are (optimal) linear combinations of the variables of a data table. When the goal is to find the shared information between two tables, the ap...
متن کاملA delta least squares lattice algorithm for fast sampling
Most shift operator-based adaptive algorithms exhibit poor numerical behavior when the input discrete time process is obtained from a continuous time process by fast sampling. This includes the shift operator based least squares lattice algorithm. In this paper, we develop a delta least squares lattice algorithm. This algorithm has low computational complexity compared to the delta Levinson RLS...
متن کاملReflections on Partial Least Squares Path Modeling
The purpose of the present article is to take stock of a recent exchange in Organizational Research Methods between critics and proponents of partial least squares path modeling (PLS-PM). The two target articles were centered around six principal issues, namely whether PLS-PM: (a) can be truly characterized as a technique for structural equation modeling (SEM), (b) is able to correct for measur...
متن کاملPartial least-squares algorithm for weights initialization of backpropagation network
This paper proposes a hybrid scheme to set the weights initialization and the optimal number of hidden nodes of the backpropagation network (BPN) by applying the loading weights and factor numbers of the partial least-squares (PLS) algorithm. The joint PLS and BPN method (PLSBPN) starts with a small residual error, modi6es the latent weight matrices, and obtains a near-global minimum in the cal...
متن کاملPartial Least Squares Regression (PLS)
Number of latents The same number of factors will be extracted for PLS responses as for PLS factors. The researcher must specify how many latents to extract (in SPSS the default is 5). There is no one criterion for deciding how many latents to employ. Common alternatives are: 1. Cross-validating the model with increasing numbers of factors, then choosing the number with minimum prediction error...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: RECI Revista Iberoamericana de las Ciencias Computacionales e Informática
سال: 2016
ISSN: 2007-9915
DOI: 10.23913/reci.v5i9.44